How HashMap works

HashMap的工作原理是近年来常见的Java面试题。几乎每个Java程序员都知道HashMap,都知道哪里要用HashMap,知道Hashtable和HashMap之间的区别,那么为何这道面试题如此特殊呢?是因为这道题考察的深度很深。这题经常出现在高级或中高级面试中。投资银行更喜欢问这个问题,甚至会要求你实现HashMap来考察你的编程能力。ConcurrentHashMap和其它同步集合的引入让这道题变得更加复杂。让我们开始探索的旅程吧!

先来些简单的问题

“你用过HashMap吗?” “什么是HashMap?你为什么用到它?”

几乎每个人都会回答“是的”,然后回答HashMap的一些特性,譬如HashMap可以接受null键值和值,而Hashtable则不能;HashMap是非synchronized;HashMap很快;以及HashMap储存的是键值对等等。这显示出你已经用过HashMap,而且对它相当的熟悉。但是面试官来个急转直下,从此刻开始问出一些刁钻的问题,关于HashMap的更多基础的细节。面试官可能会问出下面的问题:

“你知道HashMap的工作原理吗?” “你知道HashMap的get()方法的工作原理吗?”

你也许会回答“我没有详查标准的Java API,你可以看看Java源代码或者Open JDK。”“我可以用Google找到答案。”

但一些面试者可能可以给出答案,“HashMap是基于hashing的原理,我们使用put(key, value)存储对象到HashMap中,使用get(key)从HashMap中获取对象。当我们给put()方法传递键和值时,我们先对键调用hashCode()方法,返回的hashCode用于找到bucket位置来储存Entry对象。”这里关键点在于指出,HashMap是在bucket中储存键对象和值对象,作为Map.Entry。这一点有助于理解获取对象的逻辑。如果你没有意识到这一点,或者错误的认为仅仅只在bucket中存储值的话,你将不会回答如何从HashMap中获取对象的逻辑。这个答案相当的正确,也显示出面试者确实知道hashing以及HashMap的工作原理。但是这仅仅是故事的开始,当面试官加入一些Java程序员每天要碰到的实际场景的时候,错误的答案频现。下个问题可能是关于HashMap中的碰撞探测(collision detection)以及碰撞的解决方法:

“当两个对象的hashcode相同会发生什么?” 从这里开始,真正的困惑开始了,一些面试者会回答因为hashcode相同,所以两个对象是相等的,HashMap将会抛出异常,或者不会存储它们。然后面试官可能会提醒他们有equals()和hashCode()两个方法,并告诉他们两个对象就算hashcode相同,但是它们可能并不相等。一些面试者可能就此放弃,而另外一些还能继续挺进,他们回答“因为hashcode相同,所以它们的bucket位置相同,‘碰撞’会发生。因为HashMap使用链表存储对象,这个Entry(包含有键值对的Map.Entry对象)会存储在链表中。”这个答案非常的合理,虽然有很多种处理碰撞的方法,这种方法是最简单的,也正是HashMap的处理方法。但故事还没有完结,面试官会继续问:

“如果两个键的hashcode相同,你如何获取值对象?” 面试者会回答:当我们调用get()方法,HashMap会使用键对象的hashcode找到bucket位置,然后获取值对象。面试官提醒他如果有两个值对象储存在同一个bucket,他给出答案:将会遍历链表直到找到值对象。面试官会问因为你并没有值对象去比较,你是如何确定确定找到值对象的?除非面试者直到HashMap在链表中存储的是键值对,否则他们不可能回答出这一题。

其中一些记得这个重要知识点的面试者会说,找到bucket位置之后,会调用keys.equals()方法去找到链表中正确的节点,最终找到要找的值对象。完美的答案!

许多情况下,面试者会在这个环节中出错,因为他们混淆了hashCode()和equals()方法。因为在此之前hashCode()屡屡出现,而equals()方法仅仅在获取值对象的时候才出现。一些优秀的开发者会指出使用不可变的、声明作final的对象,并且采用合适的equals()和hashCode()方法的话,将会减少碰撞的发生,提高效率。不可变性使得能够缓存不同键的hashcode,这将提高整个获取对象的速度,使用String,Interger这样的wrapper类作为键是非常好的选择。

如果你认为到这里已经完结了,那么听到下面这个问题的时候,你会大吃一惊。“如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?”除非你真正知道HashMap的工作原理,否则你将回答不出这道题。默认的负载因子大小为0.75,也就是说,当一个map填满了75%的bucket时候,和其它集合类(如ArrayList等)一样,将会创建原来HashMap大小的两倍的bucket数组,来重新调整map的大小,并将原来的对象放入新的bucket数组中。这个过程叫作rehashing,因为它调用hash方法找到新的bucket位置。

如果你能够回答这道问题,下面的问题来了:“你了解重新调整HashMap大小存在什么问题吗?”你可能回答不上来,这时面试官会提醒你当多线程的情况下,可能产生条件竞争(race condition)。

当重新调整HashMap大小的时候,确实存在条件竞争,因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了。这个时候,你可以质问面试官,为什么这么奇怪,要在多线程的环境下使用HashMap呢?:)

热心的读者贡献了更多的关于HashMap的问题:

  1. 为什么String, Interger这样的wrapper类适合作为键? String, Interger这样的wrapper类作为HashMap的键是再适合不过了,而且String最为常用。因为String是不可变的,也是final的,而且已经重写了equals()和hashCode()方法了。其他的wrapper类也有这个特点。不可变性是必要的,因为为了要计算hashCode(),就要防止键值改变,如果键值在放入时和获取时返回不同的hashcode的话,那么就不能从HashMap中找到你想要的对象。不可变性还有其他的优点如线程安全。如果你可以仅仅通过将某个field声明成final就能保证hashCode是不变的,那么请这么做吧。因为获取对象的时候要用到equals()和hashCode()方法,那么键对象正确的重写这两个方法是非常重要的。如果两个不相等的对象返回不同的hashcode的话,那么碰撞的几率就会小些,这样就能提高HashMap的性能。
  2. 我们可以使用自定义的对象作为键吗? 这是前一个问题的延伸。当然你可能使用任何对象作为键,只要它遵守了equals()和hashCode()方法的定义规则,并且当对象插入到Map中之后将不会再改变了。如果这个自定义对象时不可变的,那么它已经满足了作为键的条件,因为当它创建之后就已经不能改变了。
  3. 我们可以使用CocurrentHashMap来代替Hashtable吗?这是另外一个很热门的面试题,因为ConcurrentHashMap越来越多人用了。我们知道Hashtable是synchronized的,但是ConcurrentHashMap同步性能更好,因为它仅仅根据同步级别对map的一部分进行上锁。ConcurrentHashMap当然可以代替HashTable,但是HashTable提供更强的线程安全性。看看这篇博客查看Hashtable和ConcurrentHashMap的区别。

我个人很喜欢这个问题,因为这个问题的深度和广度,也不直接的涉及到不同的概念。让我们再来看看这些问题设计哪些知识点:

  • hashing的概念
  • HashMap中解决碰撞的方法
  • equals()和hashCode()的应用,以及它们在HashMap中的重要性
  • 不可变对象的好处
  • HashMap多线程的条件竞争
  • 重新调整HashMap的大小

总结

HashMap的工作原理

HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象。当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,让后找到bucket位置来储存值对象。当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象。HashMap使用链表来解决碰撞问题,当发生碰撞了,对象将会储存在链表的下一个节点中。 HashMap在每个链表节点中储存键值对对象。

当两个不同的键对象的hashcode相同时会发生什么? 它们会储存在同一个bucket位置的链表中。键对象的equals()方法用来找到键值对。

因为HashMap的好处非常多,我曾经在电子商务的应用中使用HashMap作为缓存。因为金融领域非常多的运用Java,也出于性能的考虑,我们会经常用到HashMap和ConcurrentHashMap。你可以查看更多的关于HashMap的文章:

原文链接: Javarevisited 翻译: ImportNew.com 唐小娟
译文链接: http://www.importnew.com/7099.html

并发问题的症状

多线程put后可能导致get死循环

从前我们的Java代码因为一些原因使用了HashMap这个东西,但是当时的程序是单线程的,一切都没有问题。后来,我们的程序性能有问题,所以需要变成多线程的,于是,变成多线程后到了线上,发现程序经常占了100%的CPU,查看堆栈,你会发现程序都Hang在了HashMap.get()这个方法上了,重启程序后问题消失。但是过段时间又会来。而且,这个问题在测试环境里可能很难重现。

我们简单的看一下我们自己的代码,我们就知道HashMap被多个线程操作。而Java的文档说HashMap是非线程安全的,应该用ConcurrentHashMap。但是在这里我们可以来研究一下原因。简单代码如下:

package com.king.hashmap;

import java.util.HashMap;

public class TestLock {

    private HashMap map = new HashMap();

    public TestLock() {
        Thread t1 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.put(new Integer(i), i);
                }
                System.out.println("t1 over");
            }
        };

        Thread t2 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.put(new Integer(i), i);
                }

                System.out.println("t2 over");
            }
        };

        Thread t3 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.put(new Integer(i), i);
                }

                System.out.println("t3 over");
            }
        };

        Thread t4 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.put(new Integer(i), i);
                }

                System.out.println("t4 over");
            }
        };

        Thread t5 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.put(new Integer(i), i);
                }

                System.out.println("t5 over");
            }
        };

        Thread t6 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.get(new Integer(i));
                }

                System.out.println("t6 over");
            }
        };

        Thread t7 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.get(new Integer(i));
                }

                System.out.println("t7 over");
            }
        };

        Thread t8 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.get(new Integer(i));
                }

                System.out.println("t8 over");
            }
        };

        Thread t9 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.get(new Integer(i));
                }

                System.out.println("t9 over");
            }
        };

        Thread t10 = new Thread() {
            public void run() {
                for (int i = 0; i < 50000; i++) {
                    map.get(new Integer(i));
                }

                System.out.println("t10 over");
            }
        };

        t1.start();
        t2.start();
        t3.start();
        t4.start();
        t5.start();

        t6.start();
        t7.start();
        t8.start();
        t9.start();
        t10.start();
    }

    public static void main(String[] args) {
        new TestLock();
    }
}

就是启了10个线程,不断的往一个非线程安全的HashMap中put内容/get内容,put的内容很简单,key和value都是从0自增的整数(这个put的内容做的并不好,以致于后来干扰了我分析问题的思路)。对HashMap做并发写操作,我原以为只不过会产生脏数据的情况,但反复运行这个程序,会出现线程t1、t2被hang住的情况,多数情况下是一个线程被hang住另一个成功结束,偶尔会10个线程都被hang住。

产生这个死循环的根源在于对一个未保护的共享变量 — 一个”HashMap”数据结构的操作。当在所有操作的方法上加了”synchronized”后,一切恢复了正常。这算jvm的bug吗?应该说不是的,这个现象很早以前就报告出来了。Sun的工程师并不认为这是bug,而是建议在这样的场景下应采用”ConcurrentHashMap”,

CPU利用率过高一般是因为出现了出现了死循环,导致部分线程一直运行,占用cpu时间。问题原因就是HashMap是非线程安全的,多个线程put的时候造成了某个key值Entry key List的死循环,问题就这么产生了。

当另外一个线程get 这个Entry List 死循环的key的时候,这个get也会一直执行。最后结果是越来越多的线程死循环,最后导致服务器dang掉。我们一般认为HashMap重复插入某个值的时候,会覆盖之前的值,这个没错。但是对于多线程访问的时候,由于其内部实现机制(在多线程环境且未作同步的情况下,对同一个HashMap做put操作可能导致两个或以上线程同时做rehash动作,就可能导致循环键表出现,一旦出现线程将无法终止,持续占用CPU,导致CPU使用率居高不下),就可能出现安全问题了。

使用jstack工具dump出问题的那台服务器的栈信息。死循环的话,首先查找RUNNABLE的线程,找到问题代码如下:

java.lang.Thread.State:RUNNABLE at java.util.HashMap.get(HashMap.java:303) at com.sohu.twap.service.logic.TransformTweeter.doTransformTweetT5(TransformTweeter.java:183) 共出现了23次。 java.lang.Thread.State:RUNNABLE at java.util.HashMap.put(HashMap.java:374) at com.sohu.twap.service.logic.TransformTweeter.transformT5(TransformTweeter.java:816) 共出现了3次。

注意:不合理使用HashMap导致出现的是死循环而不是死锁。

多线程put的时候可能导致元素丢失

主要问题出在addEntry方法的new Entry<K,V>(hash, key, value, e),如果两个线程都同时取得了e,则他们下一个元素都是e,然后赋值给table元素的时候有一个成功有一个丢失。

put非null元素后get出来的却是null

在transfer方法中代码如下:

void transfer(Entry[] newTable) {
    Entry[] src = table;
    int newCapacity = newTable.length;
    for (int j = 0; j < src.length; j++) {
        Entry e = src[j];
        if (e != null) {
            src[j] = null;
            do {
                Entry next = e.next;
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            } while (e != null);
        }
    }
}

在这个方法里,将旧数组赋值给src,遍历src,当src的元素非null时,就将src中的该元素置null,即将旧数组中的元素置null了,也就是这一句:

if (e != null) {
        src[j] = null;

此时若有get方法访问这个key,它取得的还是旧数组,当然就取不到其对应的value了。

总结:HashMap未同步时在并发程序中会产生许多微妙的问题,难以从表层找到原因。所以使用HashMap出现了违反直觉的现象,那么可能就是并发导致的了。

HashMap数据结构

我需要简单地说一下HashMap这个经典的数据结构。

HashMap通常会用一个指针数组(假设为table[])来做分散所有的key,当一个key被加入时,会通过Hash算法通过key算出这个数组的下标i,然后就把这个<key, value>插到table[i]中,如果有两个不同的key被算在了同一个i,那么就叫冲突,又叫碰撞,这样会在table[i]上形成一个链表。

我们知道,如果table[]的尺寸很小,比如只有2个,如果要放进10个keys的话,那么碰撞非常频繁,于是一个O(1)的查找算法,就变成了链表遍历,性能变成了O(n),这是Hash表的缺陷。

所以,Hash表的尺寸和容量非常的重要。一般来说,Hash表这个容器当有数据要插入时,都会检查容量有没有超过设定的thredhold,如果超过,需要增大Hash表的尺寸,但是这样一来,整个Hash表里的元素都需要被重算一遍。这叫rehash,这个成本相当的大。

HashMap的rehash源代码

下面,我们来看一下Java的HashMap的源代码。Put一个Key,Value对到Hash表中:

public V put(K key, V value)
{
    ......
    //算Hash值
    int hash = hash(key.hashCode());
    int i = indexFor(hash, table.length);
    //如果该key已被插入,则替换掉旧的value (链接操作)
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    modCount++;
    //该key不存在,需要增加一个结点
    addEntry(hash, key, value, i);
    return null;
}

检查容量是否超标:

void addEntry(int hash, K key, V value, int bucketIndex)
{
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
    //查看当前的size是否超过了我们设定的阈值threshold,如果超过,需要resize
    if (size++ >= threshold)
        resize(2 * table.length);
}

新建一个更大尺寸的hash表,然后把数据从老的Hash表中迁移到新的Hash表中。

void resize(int newCapacity)
{
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    ......
    //创建一个新的Hash Table
    Entry[] newTable = new Entry[newCapacity];
    //将Old Hash Table上的数据迁移到New Hash Table上
    transfer(newTable);
    table = newTable;
    threshold = (int)(newCapacity * loadFactor);
}

迁移的源代码,注意高亮处:

void transfer(Entry[] newTable)
{
    Entry[] src = table;
    int newCapacity = newTable.length;
    //下面这段代码的意思是:
    //  从OldTable里摘一个元素出来,然后放到NewTable中
    for (int j = 0; j < src.length; j++) {
        Entry<K,V> e = src[j];
        if (e != null) {
            src[j] = null;
            do {
                Entry<K,V> next = e.next;
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            } while (e != null);
        }
    }
}

好了,这个代码算是比较正常的。而且没有什么问题。

正常的ReHash过程

画了个图做了个演示。

  1. 我假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。
  2. 最上面的是old hash 表,其中的Hash表的size=2, 所以key = 3, 7, 5,在mod 2以后都冲突在table1这里了。
  3. 接下来的三个步骤是Hash表 resize成4,然后所有的<key,value> 重新rehash的过程。

在此输入图片描述

并发的Rehash过程

(1)假设我们有两个线程。我用红色和浅蓝色标注了一下。我们再回头看一下我们的 transfer代码中的这个细节:

do {
    Entry<K,V> next = e.next; // <--假设线程一执行到这里就被调度挂起了
    int i = indexFor(e.hash, newCapacity);
    e.next = newTable[i];
    newTable[i] = e;
    e = next;
} while (e != null);

而我们的线程二执行完成了。于是我们有下面的这个样子。 在此输入图片描述

注意:因为Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。我们可以看到链表的顺序被反转后。 (2)线程一被调度回来执行。

  1. 先是执行 newTalbe[i] = e。
  2. 然后是e = next,导致了e指向了key(7)。
  3. 而下一次循环的next = e.next导致了next指向了key(3)。

在此输入图片描述 (3)一切安好。 线程一接着工作。把key(7)摘下来,放到newTable[i]的第一个,然后把e和next往下移。 在此输入图片描述 (4)环形链接出现。e.next = newTable[i] 导致 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。 在此输入图片描述 于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。

三种解决方案

Hashtable替换HashMap

Hashtable 是同步的,但由迭代器返回的 Iterator 和由所有 Hashtable 的“collection 视图方法”返回的 Collection 的 listIterator 方法都是快速失败的:在创建 Iterator 之后,如果从结构上对 Hashtable 进行修改,除非通过 Iterator 自身的移除或添加方法,否则在任何时间以任何方式对其进行修改,Iterator 都将抛出 ConcurrentModificationException。因此,面对并发的修改,Iterator 很快就会完全失败,而不冒在将来某个不确定的时间发生任意不确定行为的风险。由 Hashtable 的键和值方法返回的 Enumeration 不是快速失败的。

注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误做法:迭代器的快速失败行为应该仅用于检测程序错误。

Collections.synchronizedMap将HashMap包装起来

返回由指定映射支持的同步(线程安全的)映射。为了保证按顺序访问,必须通过返回的映射完成对底层映射的所有访问。在返回的映射或其任意 collection 视图上进行迭代时,强制用户手工在返回的映射上进行同步:

Map m = Collections.synchronizedMap(new HashMap());
...
Set s = m.keySet();  // Needn't be in synchronized block
...
synchronized(m) {  // Synchronizing on m, not s!
Iterator i = s.iterator(); // Must be in synchronized block
    while (i.hasNext())
        foo(i.next());
}

不遵从此建议将导致无法确定的行为。如果指定映射是可序列化的,则返回的映射也将是可序列化的。

ConcurrentHashMap替换HashMap

支持检索的完全并发和更新的所期望可调整并发的哈希表。此类遵守与 Hashtable 相同的功能规范,并且包括对应于 Hashtable 的每个方法的方法版本。不过,尽管所有操作都是线程安全的,但检索操作不必锁定,并且不支持以某种防止所有访问的方式锁定整个表。此类可以通过程序完全与 Hashtable 进行互操作,这取决于其线程安全,而与其同步细节无关。 检索操作(包括 get)通常不会受阻塞,因此,可能与更新操作交迭(包括 put 和 remove)。检索会影响最近完成的更新操作的结果。对于一些聚合操作,比如 putAll 和 clear,并发检索可能只影响某些条目的插入和移除。类似地,在创建迭代器/枚举时或自此之后,Iterators 和 Enumerations 返回在某一时间点上影响哈希表状态的元素。它们不会抛出 ConcurrentModificationException。不过,迭代器被设计成每次仅由一个线程使用。

Reference:

https://my.oschina.net/xianggao/blog/393990

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s